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Background: The residual approach to measuring cognitive reserve (using

the residual reserve index) aims to capture cognitive resilience conferred

by cognitive reserve, but may be confounded by factors representing brain

resilience. We sought to distinguish between brain and cognitive resilience

by comparing interactions between the residual reserve index and amyloid,

tau, and neurodegeneration [“AT(N)”] biomarkers when predicting executive

function. We hypothesized that the residual reserve index would moderate at

least one path from an AT(N) biomarker to executive function (consistent with

cognitive resilience), as opposed to moderating a path between two AT(N)

biomarkers (suggestive of brain resilience).

Methods: Participants (N = 332) were from the Alzheimer’s Disease

Neuroimaging Initiative. The residual reserve index represented the difference

between observed and predicted memory performance (a positive residual

reserve index suggests higher cognitive reserve). AT(N) biomarkers were: CSF

β-amyloid1−42/β-amyloid1−40 (A), plasma phosphorylated tau-181 (T), and

FDG metabolism in AD-specific regions ([N]). AT(N) biomarkers (measured at

consecutive time points) were entered in a sequential mediation model testing

the indirect effects from baseline amyloid to executive function intercept

(third annual follow-up) and slope (baseline to seventh follow-up), via tau

and/or FDG metabolism. The baseline residual reserve index was entered as a

moderator of paths between AT(N) biomarkers (e.g., amyloid-tau), and paths

between AT(N) biomarkers and executive function.

Results: The residual reserve index interacted with amyloid pathology

when predicting FDG metabolism: the indirect effect of amyloid → FDG

metabolism→ executive function intercept and slope varied as a function of
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the residual reserve index. With lower amyloid pathology, executive function

performance was comparable at different levels of the residual reserve

index, but a higher residual reserve index was associated with lower FDG

metabolism. With higher amyloid pathology, a higher residual reserve index

predicted better executive function via higher FDG metabolism.

Conclusion: The effect of the residual reserve index on executive function

performance via FDG metabolism was consistent with cognitive resilience.

This suggests the residual reserve index captures variation in cognitive reserve;

specifically, neural efficiency, and neural capacity to upregulate metabolism

to enhance cognitive resilience in the face of greater amyloid pathology.

Implications for future research include the potential bidirectionality between

neural efficiency and amyloid accumulation.

KEYWORDS

cognitive reserve, Alzheimer’s disease, amyloid cascade hypothesis, executive
function, AT(N) classification system, cognitive resilience, FDG metabolism

Introduction

As the global population ages, the number of individuals
affected by dementia is expected to grow rapidly (Livingston
et al., 2020). Alzheimer’s disease is the leading cause of
dementia, and is a major contributor to global disease burden
(Nichols et al., 2019). Although the search for disease-modifying
treatments has produced some promising candidates (van
Bokhoven et al., 2021), prevention is key to reducing the burden
of Alzheimer’s disease, and requires an understanding of the
biological and environmental factors that confer resistance and
resilience across the Alzheimer’s disease continuum (Hampel
et al., 2019). “Resistance” refers to the reduced or delayed
development of neuropathology (e.g., resistance to Alzheimer’s
disease pathology), whereas “resilience” refers to the capacity for
the brain to cope with neuropathology (Arenaza-Urquijo and
Vemuri, 2020; Stern et al., 2022). For example, high resilience
may be reflected by lower than expected neurodegeneration at
a given level of Alzheimer’s disease pathology (which we will
describe as “brain resilience”), or better than expected cognitive
performance at a given level of neurodegeneration (which we
will describe as “cognitive resilience”).

A wealth of research shows that modifiable behavioral
factors (e.g., education and engagement in cognitively

Abbreviations: Aβ42/Aβ40, ratio of CSF β-amyloid1−42 to β-amyloid1−40;
ADNI-Mem, ADNI’s composite measure of episodic memory; ADNI-
EF, ADNI’s composite measure of executive function; AT(N), the
biological classification system wherein AD is classified according to
the presence/severity of amyloid pathology (A), tau pathology (T), and
neurodegeneration (N); HCV, bilateral hippocampal volume; p-tau181,
plasma phosphorylated tau 181; WBV, whole brain volume; WMH, white
matter hyperintensity volume; TIV, total intracranial volume.

stimulating activities) enhance cognitive resilience in the
face of Alzheimer’s disease neuropathology, which then delays
or prevents dementia (Livingston et al., 2020; Scheltens et al.,
2021). Cognitive reserve is one hypothesized mechanism
underlying this cognitive resilience: for a given degree of
Alzheimer’s disease neuropathology, an individual with
greater cognitive reserve is expected to have better cognitive
functioning and show less impaired clinical status compared to
an individual with lower cognitive reserve (Stern, 2009; Stern
et al., 2022). Although there is substantial support for the theory
of cognitive reserve, efforts to conceptualize, operationalize, and
understand cognitive reserve are ongoing (Stern et al., 2020).

One approach to measuring cognitive reserve is the
residual approach, which operationalizes cognitive reserve as the
variance in episodic memory performance that is not explained
by demographics and brain integrity, i.e., the difference between
observed performance and the performance expected based on
demographics and brain integrity. In this way, it may also be
considered a measure of the cognitive resilience an individual
is expressing at the time of measurement. Compared to proxy
measurements of cognitive reserve (e.g., years of education),
the residual approach offers a more direct estimate of cognitive
reserve and can be measured dynamically (Reed et al., 2010;
Bettcher et al., 2019).

Prior research has supported the validity of the residual
(hereafter referred to as the residual reserve index) as a measure
of cognitive reserve; e.g., a higher residual reserve index has been
associated with better cognitive performance, slower cognitive
decline, and reduced risk for dementia (Bocancea et al., 2021).
Importantly, the residual reserve index has been shown to
modify the relationship between neuropathology and separate
cognitive or clinical outcomes (e.g., Zahodne et al., 2013), which
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is a key characteristic of cognitive reserve (Stern et al., 2020).
Our previous work showed that the residual reserve index
interacted with CSF biomarkers of Alzheimer’s disease: it was
positively associated with cognitive decline when biomarkers
were positive for Alzheimer’s disease, but there was no
association with cognitive decline when CSF biomarkers were
consistent with typical aging (McKenzie et al., 2020). This
suggests that cognitive reserve, insofar as it is captured by
the residual approach, requires a certain degree of Alzheimer’s
disease neuropathology before is it “activated” as a predictor of
attenuated cognitive decline.

The residual reserve index contains that which is
unexplained, or unknown, about cognitive performance.
As cognitive performance is ultimately the product of brain
function, the unexplained variance in the residual reserve index
may be attributed to “unmeasured” brain factors (Mungas
et al., 2021). which we assume represent cognitive reserve, to
some degree (Reed et al., 2010). This assumption may be a
limitation of the residual approach, as the residual reserve index
may be confounded by unmeasured brain factors that are not
directly related to cognitive reserve (Stern, 2021). For example,
brain reserve and brain maintenance may protect cognitive
function as a downstream effect of the brain’s resistance or
resilience to neuropathology (Nyberg et al., 2012; Stern et al.,
2020), rather than the cognitive resilience to neuropathology
imparted by cognitive reserve. Compared to cognitive reserve,
brain reserve and maintenance are proposed to have different
associations with biological and environmental determinants,
and to interact differently with biomarkers of Alzheimer’s
disease neuropathology to predict better clinical outcomes
(Habeck et al., 2016; Cabeza et al., 2018), making them distinct
research concepts in Alzheimer’s disease prevention (Stern et al.,
2020). Potential contamination of the residual reserve index by
factors such as brain reserve or brain maintenance is therefore
an important issue that, to our knowledge, is yet to be resolved.

The present study sought to address this issue and further
test the validity of the residual reserve index as a measure of
cognitive reserve by (1) locating its protective effects along an
Alzheimer’s disease pathological sequence, and (2) evaluating
whether this location reflects a protective mechanism consistent
with cognitive reserve theory. To do this, we tested the
interactions between the residual reserve index and biomarkers
of Alzheimer’s disease pathology and neurodegeneration within
a model based on the modified amyloid cascade hypothesis
(Figure 1; Jack et al., 2013) and informed by the AT(N)
classification system for Alzheimer’s disease biomarkers (Jack
et al., 2016). Longitudinal executive function performance was
chosen as the distal cognitive outcome, given it is sensitive
to decline in both aging and AD (Buckner, 2004; Puente
et al., 2015), and separate from the memory composite used
to create the residual reserve index (Reed et al., 2010). AT(N)
biomarkers and longitudinal executive function outcomes were
measured sequentially (Figure 1A) and entered in a mediation

model derived from the modified amyloid cascade hypothesis
(Figure 1B). The residual reserve index was measured at
baseline (T0) and an interaction term was calculated with
each biomarker (Figure 1B). By comparing the interactions
between the residual reserve index and AT(N) biomarkers at
each stage of this pre-defined Alzheimer’s disease pathological
sequence, we can test whether the residual reserve index
positively predicts downstream executive function performance,
and whether the location of its moderating effect is consistent
with cognitive reserve theory.

Our first hypothesis was that the effect of amyloid pathology
on downstream executive function performance would be
serially mediated by tau pathology and neurodegeneration.
This hypothesis would be supported by a significant indirect
effect of amyloid pathology on executive function performance
(intercept and/or slope) via tau pathology and, subsequently,
neurodegeneration (Figure 1C, bottom). Support for this
hypothesis would affirm that our model of the modified amyloid
cascade hypothesis (Jack et al., 2013, 2018) is appropriate in this
sample, and provides a basis for testing more specific hypotheses
about the role of cognitive reserve within the AT(N) framework.

The second hypothesis was that the residual reserve index
would preferentially moderate at least one path from an AT(N)
biomarker to executive function performance, as opposed to
primarily moderating a path between two biomarkers. This
hypothesis would be supported by a significant interaction (or,
if more than one interaction is significant, an interaction of
greatest magnitude) between the residual reserve index and
an antecedent biomarker when predicting executive function
performance. Support for this hypothesis would suggest the
residual reserve index attenuates the effect of one or more
AT(N) biomarkers on cognitive performance (consistent with
cognitive resilience), rather than attenuating the effect of an
upstream AT(N) biomarker on a downstream AT(N) biomarker
(consistent with brain resilience or resistance). For example, if
the residual reserve index primarily moderates the influence
of neurodegeneration on executive function performance, this
would further validate the residual reserve index as a measure of
cognitive reserve, by indicating it captures variance in cognitive
resilience to neuropathology. A contrasting example might be if
the residual reserve index primarily moderates the influence of
amyloid pathology on tau pathology; this may suggest that the
residual reserve index is capturing a brain resistance mechanism
consistent with brain maintenance, instead of (or in addition to)
cognitive reserve.

Materials and methods

Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database at http://adni.
loni.usc.edu/data-samples/access-data/. ADNI was launched in
2003 as a public-private partnership, and is led by Principal
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FIGURE 1

The moderated sequential mediation model. Biomarkers used were the ratio of CSF β-amyloid1-42 to β-amyloid1-40 (Aβ42/Aβ40) for amyloid
pathology; plasma phosphorylated tau 181 (p-tau181) for tau pathology; and uptake of 18Ffluorodeoxyglucose tracer (FDG metabolism) in
AD-specific regions of interest for neurodegeneration. Executive function (EF) was measured using ADNI’s composite measure of EF. MEMR
denotes the residual reserve index. (A) the timeline of data collection for variables used in the sequential mediation model, from baseline (T0)
through to the seventh annual follow-up (T7). (B) The moderated sequential mediation model used to test this study’s hypotheses. EF intercept
and slope were latent growth factors; the intercept was estimated at T3, and the slope was estimated using all available time points (see
Supplementary Figure 2). MEMR was entered as a moderator of all individual paths in the mediation component of the model. Dashed arrows
are used for illustrative purposes, to signify paths that relate to moderation by MEMR; solid arrows relate to mediation relationships. Not shown:
demographic variables of baseline age, sex, and education were entered as covariates of ADNI-EF intercept and slope. (C) The indirect effects
estimated in (B). The magnitude of an effect (i.e., BAT, BATN, BAN) is the product of the a, b, or c paths shown in (B).

Investigator Michael W. Weiner, MD. The goal of ADNI is to
improve understanding of the progression of mild cognitive
impairment and early Alzheimer’s disease, by combining
biological markers, e.g., magnetic resonance imaging (MRI),
with clinical and neuropsychological assessment. For more
information, please see http://adni.loni.usc.edu/.

Participants

Data were collected by ADNI investigators at 59 sites in
North America. For maximum data coverage, the current study
used data from the ADNI1, ADNIGO, and ADNI2 phases
(N = 2,351 participants). For inclusion in ADNI, participants

needed to be aged between 55 and 90 years, in generally
good health, and willing to participate in a longitudinal study
that included neuroimaging and collection of blood and CSF
biomarkers. Full inclusion criteria can be found at http://adni.
loni.usc.edu/. Written informed consent was obtained from
each participant, per the research ethics requirements at each
participating ADNI site.

Neuroimaging biomarkers

Baseline measures of hippocampal, whole brain, white
matter hyperintensity, and total intracranial volume, all derived
from MRI, were used to create the residual reserve index
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FIGURE 2

The decomposition model used to define the residual reserve index. Variance in baseline (T0) episodic memory performance (ADNI-Mem) is
decomposed into variance explained by indicators of brain integrity (also measured at T0), demographic indicators, and the residual reserve
index (MEMR). Rectangles represent observed variables and ovals represent latent variables. Observed brain integrity and demographic variables
are contained within single rectangles to simplify the diagram. Parameters are freely estimated unless labeled otherwise. Double-ended arrows
represent variance or residual variance. S2

= sample variance (multiplied by measurement error). Not shown: whole brain (WBV) and bilateral
hippocampal (HCV) volumes were regressed onto total intracranial volume to correct for head size. Correlations between observed variables
were initially freely estimated, then non-significant correlations were constrained to zero to facilitate model convergence. Correlations between
MEMR and observed variables were constrained to zero. ADNI-Mem, ADNI’s composite of episodic memory performance; logWMH,
log-transformed white matter hyperintensity volume; Aβ42/Aβ40, ratio of CSF β-amyloid1-42 to β-amyloid1-40; p-tau181, plasma phosphorylated
tau 181; FDG, uptake of 18Ffluorodeoxyglucose tracer in AD-specific regions of interest; APOE4, number of apolipoprotein-E ε4 alleles.

(Reed et al., 2010). Details of ADNI’s neuroimaging protocols
have been described previously (Jack et al., 2008) and can be
downloaded from http://adni.loni.usc.edu/. Pre-processed T1-
weighted MP-RAGE scans obtained from 3.0-Tesla scanners
were downloaded from the ADNI database. The volumes
were processed using the longitudinal pipeline in Freesurfer
version 6.0.0.1 Total intracranial volume was estimated using
an atlas-based spatial normalization procedure in Freesurfer
(Buckner et al., 2004).

Pre-processed WMH volumes, obtained from T2-weighted
FLAIR scans, were downloaded directly from the ADNI
database. The distribution of WMH volumes was strongly
positively skewed; therefore, this variable was log-transformed
before analyses.

The mean 18Ffluorodeoxyglucose (FDG) standard
uptake value ratio across five meta-regions of interest
(normalized using the pons as a reference) was used as a
measure of neurodegeneration (Jack et al., 2018). Details
of ADNI’s FDG PET acquisition methods are available at
http://adni.loni.usc.edu/ and have been described previously
(e.g., Landau et al., 2010).

1 http://surfer.nmr.mgh.harvard.edu/

Fluid biomarkers

The ratio of β-amyloid1−42 to β-amyloid1−40 (Aβ42/Aβ40)
in CSF was used as the measure of amyloid pathology
(Jack et al., 2018); lower Aβ42/Aβ40 values indicate greater
amyloid pathology. Baseline (T0) Aβ42/Aβ40 measurements
were downloaded directly from the ADNI database. The ADNI
CSF data collection and Aβ42/Aβ40 analysis methods have been
detailed previously (Korecka et al., 2014; Kang et al., 2015).
Previous work has shown that, compared to Aβ42 concentration
alone, CSF Aβ42/Aβ40 is a more specific measure of Alzheimer’s
disease pathology, and is a more robust proxy for cortical Aβ42

deposition (Lewczuk et al., 2014, 2017; Janelidze et al., 2016),
possibly because Aβ42/Aβ40 controls for individual variation in
total β-amyloid peptides, and is less susceptible to confounding
factors (Blennow and Zetterberg, 2018).

Tau pathology was measured using plasma phosphorylated
tau 181 (p-tau181; Jack et al., 2018). Data from baseline (T0)
and the first annual follow-up (T1) were downloaded directly
from the ADNI database to be used in the decomposition
model and moderated sequential mediation model, respectively.
We considered using CSF p-tau181 as our tau biomarker,
but decided to use plasma to capitalize on the larger
sample size at T1, per ADNI protocol (Kang et al., 2015).
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Recent studies support the validity of plasma p-tau181 as
an Alzheimer’s disease-specific biomarker of cortical tau
aggregation and a predictor of longitudinal clinical outcomes
(Janelidze et al., 2020; Karikari et al., 2021; Moscoso et al., 2021;
Palmqvist et al., 2021).

Neuropsychological data

ADNI’s composite memory measure, ADNI-Mem (Crane
et al., 2012), was used as the source of variance to be decomposed
to create the baseline (T0) residual reserve index (Figure 1).
ADNI-Mem is derived using all available memory tasks, such
as the Rey Auditory Verbal Learning Test (Rey, 1964), and has
good validity as a predictor of conversion from MCI to dementia
in the ADNI cohort (Crane et al., 2012).

ADNI’s composite executive function measure, ADNI-
EF (Gibbons et al., 2012), was used to model the growth
factors (intercept and linear slope) used as distal outcome
variables in the moderated sequential mediation. A composite
of executive function measures, e.g., Digit Span Backward
and Digit Symbol Substitution from the Wechsler Adult
Intelligence Scale 3rd edition (Wechsler, 1997), ADNI-EF is
more sensitive to change over time in the ADNI sample than
its constituent tests (Gibbons et al., 2012). ADNI-EF scores
were standardized according to the sample mean and standard
deviation at T0, so that change in ADNI-EF scores can be
interpreted as change from the T0 mean, in T0 standard
deviation units.

Demographic variables were also used in the analyses.
These included years of education (full-time equivalent;
centered on 12 years) and number of apolipoprotein-E
ε4 alleles (APOE4 status; range 0–2), and dichotomous
variables representing sex (1 = male, 0 = female), race
(1 = African American, 0 = not African American), and
ethnicity (1 = Hispanic, 0 = non-Hispanic). Demographic
variables were used to define the residual reserve index.
Education, sex, and baseline age (centered on the sample average
73.10 years) were also included as covariates of the ADNI-EF
intercept and slope.

Statistical analyses

Analyses were performed in Mplus version 8 (Muthén and
Muthén, 2017) using two structural equation models (SEMs):
(1) the decomposition of episodic memory performance to
create the residual reserve index (Figure 2), and (2) the testing
of our hypotheses using a moderated sequential mediation
model (Figure 1) based on the modified amyloid cascade
hypothesis (Jack et al., 2013, 2018). Although it is possible to
test moderated mediation models involving latent variables in
Mplus, estimating the decomposition and moderated sequential

mediation models simultaneously was too computationally
intensive due to the number of latent variable interactions
involved. Instead, we used factor scores from the decomposition
model as observed variables in the moderated sequential
mediation model. Given that saved factor scores can be
complicated by the presence of factor score indeterminacy,
which may be a source of error in subsequent analyses
(Rigdon et al., 2019), we used Bayesian analysis to impute
30 sets of plausible values for the residual reserve index, to
use in the subsequent moderated sequential mediation model
(Asparouhov and Muthén, 2010).

Maximum likelihood (ML) was the primary method used
to estimate the decomposition and moderated sequential
mediation models; the fit of ML models was evaluated
based on converging evidence from the comparative fit
index (CFI), Tucker-Lewis Index (TLI), root mean square
error of approximation (RMSEA), and the standardized root
mean square residual (SRMR), using standard criteria (Hu
and Bentler, 1999). Plausible values from the decomposition
model were imputed and saved using Bayesian SEM. The
reliability of the plausible values was estimated with intraclass
correlation using the “psych” package (Revelle, 2021) in R studio
version 2021.09.0 (RStudio Team, 2021) and R version 4.0.4
(R Core Team, 2021).

The decomposition model for the residual
reserve index

A structural equation model (Figure 2), adapted from Reed
et al. (2010), was used to decompose variance in ADNI-Mem
performance into variance explained by demographic variables,
variance explained by biomarkers of brain integrity, and a
latent variable containing residual variance (MEMR; the residual
reserve index). MEMR represents the variance in memory
performance that is not explained by brain integrity and
demographics. A large, positive residual indicates an individual
is performing better than expected based on their demographics
and brain integrity; such an individual would be interpreted as
having high cognitive reserve.

To ensure MEMR represents a unique component
of ADNI-Mem variance, its correlations with all other
observed variables in the model were constrained to
zero. Reed et al.’s (2010) original model, non-significant
correlations between observed variables were fixed to zero
to facilitate model convergence. Demographic variables that
were small, non-significant predictors of ADNI-Mem were
removed to increase parsimony in the subsequent Bayesian
analysis. Non-significant brain biomarker variables were
not removed: because the concept of “unmeasured” brain
features prominently in the interpretation of the residual
reserve index (Mungas et al., 2021), it was considered
more important to ensure all baseline biomarkers of brain
pathology and neurodegeneration were accounted for in the
decomposition model.
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Bayesian imputation of plausible values
The decomposition model (Figure 2), identified using ML

estimation, was run using Bayesian estimation with Markov
Chain Monte Carlo sampling. The criterion for convergence
was a potential scale reduction factor that stayed below
1.1 for the second 50% of iterations, and remained stable
when the total number of iterations was doubled (Gelman
and Rubin, 1992; Muthén and Asparouhov, 2011). Fit was
evaluated against the criterion of a posterior predictive p-value
(PPP) > 0.05 (Muthén and Asparouhov, 2011). ML-derived
starting values were entered into the Bayesian model, with one
exception necessary to facilitate model fit: whereas the residual
variance of ADNI-Mem was fixed to our previously calculated
estimate of measurement error of 0.161 (McKenzie et al., 2020)
in the ML model, it was freely estimated in the Bayesian
model, and a highly informative prior [N(0.161, 0.00002)] was
specified instead.

After achieving acceptable convergence and fit, 30
imputations of Bayesian plausible values for the residual
reserve index were saved. The reliability of the plausible values
was determined using the ICC(2,k); i.e., the ICC based on
a mean-rating, absolute-agreement, 2-way random effects
model (Shrout and Fleiss, 1979; McGraw and Wong, 1996; see
Supplementary material for more information).

The moderated sequential mediation model
This study’s hypotheses were tested using the moderated

sequential mediation model shown in Figure 1. This model
is based on Andrew Hayes’ PROCESS Model 92 (Hayes,
2017); Mplus syntax was adapted from syntax published by
Hayes (2015) and Stride et al. (2015). Results from the 30
imputed datasets were aggregated in Mplus; parameter estimates
were pooled across imputations, and standard errors were
calculated using the within-imputation standard errors and
between-imputation variance in parameter estimates (Schafer,
1997; Muthén and Muthén, 2017). As bootstrapped confidence
intervals are not available when analyzing multiple imputed
datasets in Mplus, the significance of the mediation effects
was evaluated by entering the average plausible values into
the moderated mediation model and obtaining bootstrapped
bias-corrected 95% confidence intervals for the indirect effects.

Amyloid pathology was modeled as a predictor of ADNI-EF
performance (intercept and slope) directly, and indirectly
via tau pathology and neurodegeneration mediators. The
ADNI-EF intercept was defined by data from the third
annual follow-up (T3), i.e., 1 year after neurodegeneration
(T2 FDG metabolism) was measured—and the ADNI-EF
slope was defined using annual data from T0 to the seventh
follow-up (T7). Age, years of education, and sex were entered
as covariates of the ADNI-EF intercept and slope. Three
indirect effects (Figure 1C) were tested simultaneously within
the moderated sequential mediation model: (1) Amyloid

pathology → mtau pathology → aneurodegeneration eurode-
EF performance (BATN); (2) Amyloid pathology → mtau
pathology → au pa-EF performance (BAT); and (3) Amyloid
pathology myneurodegeneration → eurod-EF performance
(BAN). BATN tests the serial mediation pathway predicted
by the amyloid cascade hypothesis (Jack et al., 2013,
2018). BAT tests a mediation pathway that is independent
from neurodegeneration; it reflects the degree to which
tau pathology mediates the effect of amyloid pathology
on ADNI-EF performance via mechanisms other than
neurodegeneration. BAN tests a mediation pathway that
controls for tau pathology; it reflects the degree to which
neurodegeneration mediates the effect of amyloid pathology
on ADNI-EF performance via mechanisms independent from
tau pathology.

To examine the moderating effects of the residual reserve
index, interactions between MEMR and the biomarkers were
also tested simultaneously within the model (as shown in
Figure 1B). These interactions were entered as predictors of
tau pathology, neurodegeneration, and ADNI-EF intercept and
slope, to test our hypothesis that the residual reserve index
would preferentially moderate a path from an antecedent
biomarker to ADNI-EF performance, rather than a path
between two AT(N) biomarkers. If a significant interaction was
found, the influence of this interaction on the relevant indirect
pathway(s) (BATN , BAT , and/or BAN) would be quantified using
the index of moderated mediation and by plotting conditional
indirect effects (Hayes, 2015).

Results

Of the 2,351 participants whose data were used to create
the residual reserve index, data from 332 participants were used
in the moderated sequential mediation model. This was the
number of participants with non-missing data for amyloid, tau,
and neurodegeneration biomarkers. Participant characteristics
for the total sample and moderated sequential mediation sample
are presented in Table 1.

On average, the sample used in the moderated sequential
mediation analysis were slightly younger, had a smaller
proportion of African American and Hispanic participants, a
smaller proportion of individuals with one or more APOE
ε4 alleles, slightly higher education, lower amyloid pathology
at T0, poorer T0 ADNI-Mem performance, higher T0 and
T3 ADNI-EF performance, lower tau pathology at T1, and
higher FDG metabolism at T0 and T2. The proportion
of individuals diagnosed as cognitively normal or mild
cognitive impairment at T0 was also larger in the sample
whose data were used in the moderated mediation, and the
proportion of individuals diagnosed with Alzheimer’s disease
was smaller.
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TABLE 1 Participant characteristics.

Variable Total sample (N = 2,351) Moderated sequential mediation sample (N = 332) Differencea

Age (years)

M (SD) 73.10 (7.27) 72.11 (7.52) t(2,346)= 2.663*

Sex

N (%) male 1,244 (52.90) 179 (53.92) X2(1)= 0.14

Race/ethnicity

N (%) African American 137 (5.80) 7 (2.11) X2(1)= 9.39*

N (%) Hispanic 105 (4.50) 7 (2.11) X2(1)= 5.00*

APOE ε4 status

N (%) 0 alleles 953 (40.50) 200 (60.20) X2(2)= 8.38*

N (%) 1 allele 665 (28.30) 103 (31.00)

N (%) 2 alleles 176 (7.50) 29 (8.70)

Education (years)

M (SD) 16.06 (2.75) 16.39 (2.57) t(2,346)= 2.39*

Clinical Diagnosis (T0)

N (%) CN 849 (36.10) 101 (30.40) X2(2)= 51.49**

N (%) MCI 1,074 (45.70) 208 (62.70)

N (%) AD 407 (17.30) 23 (6.9)

N (%) missing 21 (0.90) 0 (0.00)

ADNI-Mem (T0)

M (SD) 0.31 (0.90) 0.55 (0.77) t(498.73)= 5.81**

ADNI-EF (T0)

M (SD) 0.27 (1.08) 0.58 (0.94) t(490.94)= 5.74**

ADNI-EF (T3)

M (SD) 0.24 (1.14) 0.48 (1.05) t(855)= 3.27*

HCV (T0; mm3)

M (SD) 6989.14(1130.00) 7074.99(1058.22) t(1,548)= 1.52

WBV (T0; mm3)

M (SD) 910437(98483.23) 919026.36(98003.40) t(1,548)= 1.75

WMH (T0; mm3)

M (SD) 6.02 (9.43) 6.16 (9.98) t(1,430)= 0.31

TIV (mm3)

M (SD) M (SD) 1514968.61(164049.96) 1513548.84(156447.16) t(1,548)= 0.17)

Aβ42/ Aβ40 (T0)

M (SD) 0.14 (0.06) 0.15 (0.06) t(844)= 3.26*

p-tau181 (T0; pg/ml)

M (SD) 18.48 (18.83) 17.54 (12.32) t(876)= 1.10

p-tau181 (T1; pg/ml)

M (SD) 18.59 (11.56) 16.85 (9.64) t(726.40)= 3.84**

FDG metabolism (T0)

M (SD) 1.23 (0.15) 1.28 (0.12) t(734.73)= 8.47**

FDG metabolism (T2)

M (SD) 1.21 (0.17) 1.26 (0.15) t(644.05)= 7.59**

T0 amyloid, p-tau181, MRI, and FDG biomarkers were used to define the residual reserve index (Figure 2); T1 and T2 measurements, respectively, were used in the sequential moderated
mediation model (Figure 1B). APOE ε4, apolipoprotein E ε4; CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; ADNI-Mem, ADNI’s composite measure
of episodic memory; ADNI-EF, ADNI’s composite measure of executive function; HCV, bilateral hippocampal volume; WBV, whole brain volume; WMH, white matter hyperintensity
volume; TIV, total intracranial volume; Aβ42/Aβ40 , ratio of CSF β-amyloid1−42 to β-amyloid1−40 (the biomarker of amyloid pathology; lower values indicate more severe pathology);
p-tau181, plasma phosphorylated tau 181 (the biomarker of tau pathology; higher values indicate more severe pathology); FDG, uptake of 18Ffluorodeoxyglucose tracer in AD-specific
regions of interest (the biomarker of neurodegeneration).
aDifference between the participants included in the moderated sequential mediation sample, and the participants excluded due to missing data on predictor variables.
*p < 0.05.
**p < 0.001.
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The decomposition model for the
residual reserve index

The decomposition model (Figure 2) fit well using
ML estimation: RMSEA = 0.023, 90% CI (0.013–0.035);
CFI = 0.997; TLI = 0.990; SRMR = 0.019. Small, non-
significant demographic predictors of ADNI-Mem were
ethnicity, β = 0.001, SE = 0.018, p = 0.938, and race,
β = 0.009, SE = 0.018, p = 0.634; these variables were
removed to improve convergence of the Bayesian model.
Although ethnocultural factors play a significant role in
the development and progression of Alzheimer’s disease,
the majority of the ADNI cohort is non-Hispanic white
(Birkenbihl et al., 2020), which limits our ability to find
significant independent effects of race or ethnicity on cognitive
performance in this sample.

Bayesian imputation of plausible values

The Bayesian decomposition model fit well, PPP = 0.418.
Comparison of the standardized Bayesian parameter estimates
with the standardized ML estimates indicated good consistency
between the two models (see Supplementary material). High
agreement was also demonstrated across the 30 sets of
imputed MEMR plausible values, ICC(2, 30) = 0.973, 95%
CI (0.972, 0.975).

Moderated sequential mediation

Moderation and mediation effects were tested using
the moderated sequential mediation model shown in
Figure 1B; the results are shown in Figure 3. Model
fit was good, RMSEA = 0.030, 90% CI (0.013, 0.043);
CFI = 0.982; TLI = 0.980; SRMR = 0.054. The MEMR
plausible values were averaged for each subject and entered
separately into the moderated sequential mediation model
to obtain the bias-corrected bootstrapped (B = 2,000)
95% confidence intervals for the indirect effects that are
reported in the bottom-right of Figure 3 (Hayes, 2009).
Model fit was also good using the average plausible values,
RMSEA = 0.046, 90% CI (0.035, 0.057); CFI = 0.964;
TLI= 0.960; SRMR= 0.058.

Total and direct effects
The total effect of amyloid pathology on ADNI-EF intercept

and slope was significant and positive, indicating that lower
levels of amyloid pathology were associated with higher
predicted ADNI-EF scores at T3, and a slower predicted
rate of ADNI-EF decline over 7 years. Approximately half of
this total effect remained after accounting for the mediators,
indicating a significant direct effect of amyloid on ADNI-EF

intercept and slope that was independent of tau pathology and
neurodegeneration.

Less severe amyloid pathology was also uniquely associated
with less severe tau pathology at T1 and less severe
neurodegeneration at T2, such that an individual with amyloid
pathology that is one standard deviation below the sample
mean (i.e., an Aβ42/Aβ40 value one standard deviation above
the mean) would be expected to have an approximately
one-third standard deviation reduction in tau pathology
and neurodegeneration, respectively. The interaction between
amyloid pathology and MEMR was also a significant predictor
of neurodegeneration (Figure 4). While higher MEMR was
associated with more severe neurodegeneration (i.e., lower FDG
metabolism) at less severe levels of amyloid pathology, this
relationship was inverted at more severe levels of amyloid
pathology, such that higher MEMR was associated with less
severe neurodegeneration (i.e., higher FDG metabolism). No
other significant MEMR interactions were found.

Indirect effects
Of the indirect effects, BAN and BATN were significant

(Figure 3), indicating that, in this sample, there were three
different pathways by which amyloid pathology predicted
ADNI-EF intercept and slope: (1) via mechanisms that
are independent from downstream tau pathology and
neurodegeneration (i.e., direct effects), (2) serially through
tau pathology and neurodegeneration (i.e., BATN), and (3)
through neurodegeneration independent from tau pathology
(i.e., BAN). Given that the only significant MEMR interaction
was the interaction between MEMR and amyloid pathology
when predicting FDG metabolism (i.e., MEMR moderated
the amyloid → FDG metabolism direct effect), the rest of
this section will focus on interpreting the conditional BAN

indirect effects.

Conditional amyloid → fluorodeoxyglucose
metabolism → executive function effects

To examine how the BAN indirect effect depends on
MEMR (the residual reserve index), the index of moderated
mediation (IMMAN) was calculated (Hayes, 2015). The index
of moderated mediation was significantly different from
zero for the ADNI-EF intercept, IMMAN = −0.070, 95%
bootstrapped CI (−0.158, −0.035), and the ADNI-EF slope,
IMMAN = −0.009, 95% bootstrapped CI (−0.023, −0.004),
indicating that the magnitude of BAN was negatively associated
with the residual reserve index. Figure 5 illustrates how
the interaction between amyloid pathology and the residual
reserve index, when predicting neurodegeneration, alters the
downstream ADNI-EF outcomes.

Higher MEMR was associated with higher predicted ADNI-
EF performance at T3 across all levels of amyloid pathology,
although the association between MEMR and the T3 ADNI-
EF performance became stronger as amyloid pathology became
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FIGURE 3

Unstandardized estimates (95% CI) of the parameters obtained from the moderated sequential mediation model (N = 332). Parameter estimates
that are significant at the p < 0.05 level are marked with *. The 95% CIs for the indirect effects (bottom-right of figure) are bias-corrected
bootstrapped confidence intervals (2,000 draws), obtained from a model estimated using the average residual reserve index (MEMR) plausible
values. All other 95% CIs are symmetric intervals (±1.96 standard errors) obtained by pooling results from 30 imputed datasets. Dashed lines are
used for illustrative purposes, to signify paths that relate to the moderating effect of MEMR; solid lines relate to mediation relationships.
Biomarkers used were the ratio of CSF β-amyloid1-42 to β-amyloid1-40 (Aβ42/Aβ40) for amyloid pathology; plasma phosphorylated tau 181
(p-tau181) for tau pathology; and uptake of 18Ffluorodeoxyglucose tracer (FDG metabolism) in AD-specific regions of interest for
neurodegeneration. ADNI-EF denotes ADNI’s composite measure of executive function. BAT, the amyloid→ tau→ ADNI-EF indirect effect;
BATN, the amyloid fect; B neurodegeneration→ ADNI-EF indirect effect; BAN, the amyloid→ neurodegeneration→ ADNI-EF indirect effect.

more severe. MEMR was not associated with change in ADNI-
EF slope at average and more severe levels of amyloid pathology.
At less severe levels of amyloid pathology, the rate of change in
ADNI-EF appeared to depend somewhat on MEMR but, overall,
ADNI-EF rate of change was predicted to remain fairly stable at
low T0 levels of amyloid burden, regardless of the value of the
residual reserve index.

These results suggest that higher residual reserve index
values predict relative preservation of future executive function
performance, but the mechanism by which this protection
happens depends on baseline amyloid pathology. When amyloid
pathology at T0 is less severe, a higher T0 residual reserve
index relates to relatively lower FDG metabolism at T2, and a
similar executive function performance at T3 compared to lower
values of the residual reserve index. In contrast, when amyloid
pathology at T0 is more severe, the protective effect of the
residual reserve index at T0 is related to relatively higher FDG

metabolism at T2 and, subsequently, better executive function
performance at T3.

Discussion

The current study aimed to test the validity of the
residual reserve index as a measure of cognitive reserve
by (1) locating its protective effects within a sequential
mediation model based on the modified amyloid cascade
hypothesis of Alzheimer’s disease, and (2) evaluating whether
this location reflects a protective mechanism consistent with
cognitive reserve theory. Our first hypothesis was supported:
the effect of baseline amyloid pathology on future executive
function performance was partially serially mediated by
tau pathology and neurodegeneration, although the tau-
independent (amyloid → mneurodegeneration → eexecutive
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FIGURE 4

Effect of amyloid pathology on FDG metabolism as a function of the residual reserve index. Amyloid pathology (Aβ42/Aβ40) was modeled as a
continuous variable and is separated into higher pathology (–1 SD), average pathology (0 SD), and lower pathology (+1 SD) for illustration
purposes. Aβ42/Aβ40, ratio of CSF β-amyloid1-42 to β-amyloid1-40; FDG, uptake of 18Ffluorodeoxyglucose tracer in AD-specific regions of
interest; MEMR, the residual reserve index.

function) pathway explained the greatest proportion of variance
in the total amyloid effect. Our second hypothesis, that
the residual reserve index would preferentially moderate at
least one path from an antecedent biomarker to executive
function performance, was not supported. The only significant
interaction was the moderation by the T0 residual reserve
index of the path between T0 amyloid pathology and
consequent neurodegeneration at T2, which was measured
using FDG metabolism. Overall, there was a negative association
between amyloid pathology and FDG metabolism, but the
magnitude of this effect varied depending on the residual
reserve index.

Although the location of the residual reserve index’s
strongest interaction effect is inconsistent with our hypothesis,
the residual reserve index still showed a downstream protective
effect on executive function at T3 (i.e., the executive function
intercept) via its association with FDG metabolism, which is
consistent with the cognitive resilience that is assumed to be
conferred by cognitive reserve. When T0 amyloid pathology
was less severe, a higher T0 residual reserve index predicted
relatively lower T2 FDG metabolism, but there was little
difference in predicted T3 executive function performance at
varying levels of the residual reserve index. These results suggest
that, at less severe levels of amyloid pathology, individuals
with a higher residual reserve index are expected to show
lower FDG metabolism and a similar level of future executive

function performance, relative to those with a lower residual
reserve index. At increasingly severe levels of T0 amyloid
pathology, a higher residual reserve index predicted higher
T2 FDG metabolism, which consequently predicted better T3
executive function.

While a negative association between amyloid pathology
and FDG metabolism in AD-affected regions is well established
in individuals with Alzheimer’s disease dementia (Mosconi et al.,
2009; Nordberg et al., 2010), some studies show a positive
association between amyloid burden and FDG metabolism in
individuals with MCI, as well as APOE ε4 carriers and amyloid-
positive individuals with intact cognition (Cohen et al., 2009;
Kadir et al., 2012; Johnson et al., 2014; Oh et al., 2014; Yi et al.,
2014; Kemppainen et al., 2015), which may indicate there is a
compensatory increase in metabolism early in the Alzheimer’s
disease pathological continuum that has disappeared by the time
the dementia syndrome manifests. To support the contention
that an increase in metabolism is compensatory in nature,
the increase should be associated with improved cognitive
outcomes (Apostolova et al., 2018), and this was demonstrated
in a study by Ossenkoppele et al. (2014), in which amyloid
positivity was associated with higher FDG metabolism, which
subsequently predicted higher episodic memory performance,
in cognitively normal older adults. Our positive association
between the residual reserve index and FDG metabolism at
higher levels of amyloid pathology could be interpreted as
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FIGURE 5

Model-predicted ADNI-EF intercept and slope derived from conditional BAN indirect effects. Amyloid pathology (T0) is defined by continuous
variable Aβ42/Aβ40, which is separated into higher pathology (–1 SD), average pathology (0 SD), and lower pathology (+1 SD) for illustration
purposes. Colored lines represent the downstream neurodegeneration (i.e., FDG metabolism) predicted by the interaction between amyloid
pathology Aβ42/Aβ40 and the residual reserve index (MEMR) at T0. Solid vs. dashed lines denote the chosen levels of MEMR. The vertical dashed
line denotes the ADNI-EF intercept, modeled to succeed measurement of the antecedent biomarkers. BAN, the amyloid
eneurodegeneration→ ADNI-EF indirect effect; FDG, uptake of 18Ffluorodeoxyglucose tracer in AD-specific regions of interest; MEMR, the
residual reserve index; Aβ42/Aβ40, ratio of CSF β-amyloid1-42 to β-amyloid1-40.

a compensatory upregulation of metabolism since it benefits
downstream executive function performance.

If we consider FDG metabolism as a proxy for
neurodegeneration (where lower metabolism represents greater
neurodegeneration), we might expect that, at a given degree of
cognitive function or clinical severity, individuals with higher
cognitive reserve will show lower FDG metabolism (indicative of
greater neurodegeneration) compared to individuals with lower
cognitive reserve, because they are able to maintain cognitive
performance in the face of more severe brain changes (Stern
et al., 1992). Studies using education as a proxy for cognitive
reserve tend to demonstrate this pattern of poorer brain
integrity at higher levels of education (Perneczky et al., 2006;

Garibotto et al., 2008; Kemppainen et al., 2008). Ewers et al.
(2013) found that, while controlling for cognitive status,
the association between education and FDG metabolism
changed depending on level of amyloid pathology, though
they found the opposite pattern to ours: higher education was
associated with lower FDG metabolism in amyloid positive
participants, and higher FDG metabolism in amyloid negative
participants. There are a few possible explanations for our
different findings. First, we predicted future executive function
performance, rather than controlling for cognitive performance.
As such, we are reporting the association between the residual
reserve index and FDG metabolism that predicts variability
in downstream executive function performance. Second, we
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did not select our sample based on pathological severity or
cognitive performance at baseline, meaning there may be more
variation in the expression of cognitive reserve compared to a
sample of clinically normal older adults. Third, our results may
highlight an important distinction between education and the
residual reserve index: whereas education is a static estimate of
cognitive reserve over the lifetime, the residual reserve index
is intended to capture an individual’s expression of cognitive
reserve (specifically, the cognitive resilience they are exhibiting)
at the time of measurement.

Our findings suggest that the residual reserve index
represents variability in neural efficiency and capacity, which
are two of the proposed mechanisms underlying cognitive
reserve (Barulli and Stern, 2013). Briefly, efficiency is defined
as the degree of neural activity required to function, and
capacity as the maximum level of neural activity that can
be utilized in the face of increasing functional demands or
neuronal injury. Relevant to our study is the hypothetical
model of cognitive reserve and amyloid accumulation presented
by Jagust and Mormino (2011). Based on growing evidence
suggesting that higher metabolic activity accelerates amyloid
accumulation, the authors proposed that cognitive reserve slows
the deposition of cortical amyloid through an association with
greater neural efficiency; then, once a threshold of amyloid
burden is reached, an increase in neural activity may follow.
This increase may be due to an immunological response, or it
may reflect compensatory activation to preserve function once
neurodegeneration has begun.

The findings of the current study can be interpreted in
line with the efficiency and compensatory activity described in
Jagust and Mormino’s (2011) model: the negative relationship
between the residual reserve index and FDG metabolism at
less severe amyloid pathology may represent neural efficiency,
and the positive relationship at higher levels of pathology
may represent a compensatory response to amyloid burden.
This proposed neural efficiency does not show a pronounced
benefit on future executive function performance, as T3
performance was comparable at different levels of the residual
reserve index; this is consistent with our previous work
using ADNI data, which showed that the residual reserve
index was not a meaningful predictor of future executive
function in Alzheimer’s disease pathology-negative individuals
(McKenzie et al., 2020). Nonetheless, these results indicate that
a higher residual reserve index is associated with more efficient
FDG metabolism.

At more severe levels of amyloid pathology, the current
results show a positive relationship between FDG metabolism
and the residual reserve index, which suggests that individuals
with a higher residual reserve index are expected to have
higher downstream executive function performance due to a
compensatory upregulation of metabolic activity. We posit that
these results are consistent with the concept of neural metabolic
capacity, as they suggest that a higher residual reserve index

benefits cognitive performance by allowing healthy neurons
to increase their metabolic activity in the face of neurological
insult. Taken together, the results of our study suggest that the
variance in the residual reserve index is capturing variation in
cognitive reserve (Barulli and Stern, 2013): at average and below
levels of amyloid pathology, the residual reserve index manifests
as variation in metabolic efficiency, and at high levels of amyloid
pathology, the residual reserve index manifests as variation in
metabolic capacity.

Strengths, limitations, and future
directions

One salient limitation of our study is that, while we have
interpreted our results under the assumption that the residual
reserve index is modifying the effect of amyloid pathology on
FDG metabolism, we cannot exclude the reverse possibility
because amyloid pathology was measured at the same time
point as the residual reserve index; some argue a moderator
should be modeled as antecedent to the effects being modified
(Kraemer et al., 2008). It was not possible for us to model
the residual reserve index and amyloid pathology at different
time points within the overall sequential mediation model
due to insufficient data coverage. Future research that can
compare the results of a model using the residual reserve
index as the initial antecedent, to one in which amyloid
pathology is the initial antecedent may be able to characterize
their interaction with greater clarity, e.g., such a study may
be able to test Jagust and Mormino’s (2011) hypothesized
negative association between cognitive reserve and one’s degree
of amyloid accumulation.

A strength of this study is that we included baseline
measurements of AT(N) biomarkers in the memory
performance decomposition model that created the residual
reserve index, in contrast to prior iterations of the residual
reserve index that accounted only for structural brain integrity
(Reed et al., 2010; McKenzie et al., 2020). The AT(N)
biomarkers, particularly the amyloid and tau biomarkers,
are more sensitive to early neurodegenerative change than
MRI indicators of structural brain integrity, and likely added
meaningful information about baseline memory performance
(Hohman et al., 2016). By adding biomarkers of Alzheimer’s
disease pathology and neurodegeneration as predictors in
the decomposition model, we may also have accounted
for some variance in memory performance that relates to
brain maintenance (Cabeza et al., 2018). In other words,
adding the AT(N) biomarkers to the decomposition model
may have resulted in a more precise indicator of cognitive
reserve. However, it also means that the residual reserve index
created in our study is not directly comparable to the residual
reserve index used in prior studies, as the interpretation of
the residual reserve index depends on the predictors used in
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the decomposition (Ewers, 2020). This could mean that the
residual reserve index used in the current study may have
captured a unique facet of cognitive reserve compared to
other versions of the residual reserve index. This idea could
be examined in a replication of our study that compares the
results using our residual reserve index vs. a different version
of the residual reserve index, such as one defined using only
indicators of structural brain integrity (per the original model
by Reed et al., 2010).

Another strength is our use of a sequential mediation model,
which allowed us to exclude the possibility of bidirectional
relationships between biomarkers; this was especially important
given some research suggests that metabolic activity influences
the accumulation of amyloid pathology (Cohen et al., 2009;
Jagust and Mormino, 2011). In addition, the current study
revealed that the association between a CSF biomarker
of amyloid pathology and downstream FDG metabolism,
independent from plasma tau pathology, comprises a substantial
proportion of the overall effect of amyloid pathology on future
executive function performance; further, we demonstrated
that the residual reserve index preferentially moderated this
association rather than all other possible paths in our model
of the amyloid cascade. Perhaps further understanding of
cognitive resilience mechanisms can be gleaned by studying
the mechanisms by which amyloid pathology affects FDG
metabolism, and by identifying factors that modify the
expression of these mechanisms.

In a similar vein, future research could build on our
findings by examining changes in amyloid pathology and FDG
metabolism over time, to quantify the degree of amyloid
pathology needed to trigger compensatory increases in FDG
metabolism predicted by the residual reserve index, and
whether this threshold varies with the residual. In addition,
our findings may be extended by replicating our analyses using
individual FDG regions of interest, as this may reveal important
information about possible cognitive resilience mechanisms;
for example, FDG metabolism in prefrontal regions may be
associated with cognitive reserve (e.g., Morbelli et al., 2013).
Modeling dynamic change in the residual reserve index may
also provide valuable information in future studies that aim
to extend on our findings, as the rate of depletion of the
residual may be an important predictor of future outcomes
(Bettcher et al., 2019). A longitudinal mediation model would
have the advantage of controlling for autoregressive effects in
the predictors (Cain et al., 2018), which was not possible with
our sequential mediation model.

Given that the residual reserve index contains variance
in memory performance which is “unexplained,” another
important step in extending upon our findings would be to
examine associations between the residual reserve index and
modifiable lifestyle factors purported to build cognitive reserve
(e.g., engagement in cognitively stimulating activities over the
lifespan). Factors strongly associated with the residual reserve

index may then be tested within the AT(N) framework to
identify potential mechanisms underlying cognitive resilience to
Alzheimer’s disease pathology, and highlight important targets
for interventions that aim to reduce the risk of dementia due to
Alzheimer’s disease.

Conclusion

The current study presents a novel investigation of the
moderating effects of the residual reserve index on future
executive function in the context of a sequential mediation
model based on the modified amyloid cascade hypothesis
(Jack et al., 2013). We found significant indirect pathways
from CSF amyloid to executive function outcomes via tau
pathology and FDG metabolism in series, and via FDG
metabolism independent from tau, the latter moderated by
the residual reserve index. Our results showed that the
relationship between FDG metabolism and future executive
function performance varies as a function of the interaction
between antecedent amyloid pathology and the residual reserve
index. At less severe levels of amyloid pathology, individuals
with a higher residual reserve index are expected to show
lower FDG metabolism, but a comparable future executive
function performance, relative to those with a lower residual
reserve index. When amyloid pathology is more severe,
a higher residual reserve index benefits future executive
function performance, via an association with higher FDG
metabolism. We propose that these effects of the residual
reserve index are consistent with the cognitive resilience
conferred by cognitive reserve, insofar as cognitive reserve
increases metabolic efficiency and the capacity of neurons
to increase metabolism to compensate for neurodegeneration
and maintain cognitive function in the face of greater
amyloid burden.
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